(4x^3+2x^2+50)/(2x+5)

Simple and best practice solution for (4x^3+2x^2+50)/(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^3+2x^2+50)/(2x+5) equation:


D( x )

2*x+5 = 0

2*x+5 = 0

2*x+5 = 0

2*x+5 = 0 // - 5

2*x = -5 // : 2

x = -5/2

x in (-oo:-5/2) U (-5/2:+oo)

(4*x^3+2*x^2+50)/(2*x+5) = 0

4*x^3+2*x^2+50 = 0

2*(2*x^3+x^2+25) = 0

2*x^3+x^2+25 = 0

{ 1, -1, 5, -5, 25, -25 }

1

x = 1

2*x^3+x^2+25 = 28

1

-1

x = -1

2*x^3+x^2+25 = 24

-1

5

x = 5

2*x^3+x^2+25 = 300

5

-5

x = -5

2*x^3+x^2+25 = -200

-5

25

x = 25

2*x^3+x^2+25 = 31900

25

-25

x = -25

2*x^3+x^2+25 = -30600

-25

{ 1/2, -1/2, -1/2, 1/2, 5/2, -5/2, -5/2, 5/2, 25/2, -25/2, -25/2, 25/2 }

1/2

x

1/2

2*x^3+x^2+25 = 25.5

1/2

-1/2

x

-1/2

2*x^3+x^2+25 = 25

-1/2

-1/2

x

-1/2

2*x^3+x^2+25 = 25

-1/2

1/2

x

1/2

2*x^3+x^2+25 = 25.5

1/2

5/2

x

5/2

2*x^3+x^2+25 = 62.5

5/2

-5/2

x

-5/2

2*x^3+x^2+25 = 0

-5/2

x+5/2

2*x^2-4*x+10

2*x^3+x^2+25

x+5/2

-2*x^3-5*x^2

25-4*x^2

4*x^2+10*x

10*x+25

-10*x-25

0

2*x^2-4*x+10 = 0

DELTA = (-4)^2-(2*4*10)

DELTA = -64

DELTA < 0

x in { -5/2}

2*(x+5/2) = 0

(2*(x+5/2))/(2*x+5) = 0

x+5/2 = 0 // - 5/2

x = -5/2

x in { -5/2}

x belongs to the empty set

See similar equations:

| y^2-6y+9y=0 | | x^2-6x+9y=0 | | x+20/2-x/8=10 | | 5(-2+y)=7(-y+1) | | 5b-(-3b)= | | 10+5-(4+4x)=90 | | 0.5x=x+5 | | 180=x^2+5x | | 2x^3+12x^2+2x+12=0 | | 25z^2+60z-39=0 | | 29x+2y=17 | | 2x-5=7x+5 | | -2x+8+x+1=0 | | 3x+2-3x-24=0 | | 22=5(y-2)-y | | 3y+15=25 | | Y/2+4=6 | | 1.5x+4.2=3x+12 | | 6=m/3-9 | | 3n=30 | | 45=2n | | 2(7+w)=130 | | Y/2+6=10 | | 4x9=30k/16 | | y^3-6y^2+9y-4=0 | | 9n=10656 | | y^3+2y^2-6y+1=0 | | -1/4(-4+2p) | | y^3-6y^2+5y-1=0 | | 2/1=21-n/n | | -3g+7=34 | | 7w=9w-23 |

Equations solver categories